丁香五月色情久久久久,久久人人爽人人爽人人AV东京热,久久人做人爽一区二区三区,YY6080韩国三级理论无码

關注公眾號

關注公眾號

手機掃碼查看

手機查看

喜歡作者

打賞方式

微信支付微信支付
支付寶支付支付寶支付
×

超全!鋰電材料常用表征技術總覽

2023.11.13

  在鋰離子電池發展的過程當中,我們希望獲得大量有用的信息來幫助我們對材料和器件進行數據分析,以得知其各方面的性能。目前,鋰離子電池材料和器件常用到的研究方法主要有表征方法和電化學測量。

  電化學測試主要分為三個部分:(1)充放電測試,主要看電池充放電性能和倍率等;(2)循環伏安,主要是看電池的充放電可逆性,峰電流,起峰位;(3)EIS交流阻抗,看電池的電阻和極化等。

  下面就鋰電綜合研究中用到的表征手段進行簡單的介紹,大概分為八部分來講:成分表征、形貌表征、晶體結構表征、物質官能團的表征、材料離子運輸的觀察、材料的微觀力學性質、材料表面功函數和其他實驗技術。

  1、成分表征

  (1)電感耦合等離子體(ICP)

  用來分析物質的組成元素及各種元素的含量。ICP-OES可以很好地滿足實驗室主、次、痕量元素常規分析的需要;ICP-MS檢出限更低,主要用于痕量/超痕量分析。

  (2)二次離子質譜(SIMS)

  通過發射熱電子電離氬氣或氧氣等離子體轟擊樣品的表面,探測樣品表面溢出的荷電離子或離子團來表征樣品成分。可以對同位素分布進行成像,表征樣品成分;探測樣品成分的縱向分布。

  (3)X射線光子能譜(XPS)

  X射線光電子能譜不僅能測定表面的組成元素,而且還能給出各元素的化學狀態信息,能量分辨率高,具有一定的空間分辨率(目前為微米尺度)、時間分辨率(分鐘級)。

  用于測定表面的組成元素、給出各元素的化學狀態信息。

  (4)電子能量損失譜(EELS)

  利用入射電子引起材料表面電子激發、電離等非彈性散射損失的能量,通過分析能量損失的位置可以得到元素的成分。EELS相比EDX對輕元素有更好的分辨效果,能量分辨率高出1~2個量級,空間分辨能力由于伴隨著透射電鏡技術,也可以達到10?10 m的量級,同時可以用于測試薄膜厚度,有一定時間分辨能力。通過對EELS譜進行密度泛函(DFT)的擬合,可以進一步獲得準確的元素價態甚至是電子態的信息。

  (5)掃描透射X射線顯微術(STXM)

  基于第三代同步輻射光源以及高功率實驗室X 光源、X射線聚焦技術的新型譜學顯微技術。采用透射X 射線吸收成像的原理,STXM 能夠實現具有幾十個納米的高空間分辨的三維成像,同時能提供一定的化學信息。STXM 能夠實現無損傷三維成像,對于了解復雜電極材料、固體電解質材料、隔膜材料、電極以及電池可以提供關鍵的信息,而且這些技術可以實現原位測試的功能。

  (6)X射線吸收近邊譜(XANES)

  是標定元素及其價態的技術,不同化合物中同一價態的同一元素對特定能量X射線有高的吸收,我們稱之為近邊吸收譜。在鋰電池領域中,XAS主要用于電荷轉移研究,如正極材料過渡金屬變價問題。

  (7)X射線熒光光譜分析(XRF)

  利用初級X射線光子或其它微觀離子激發待測物質中的原子,使之產生熒光(次級X射線)而進行物質成分分析和化學態研究的方法。按激發、色散和探測方法的不同,分為X射線光譜法(波長色散)和X射線能譜法(能量色散)。根據色散方式不同,X射線熒光分析儀相應分為X射線熒光光譜儀(波長色散)和X射線熒光能譜儀(能量色散)。XRF被工業界廣泛應用于鋰離子電池材料主成分及雜質元素分析。對某些元素檢出限可以達到10-9的量級。

  2、形貌表征

  (1)掃描電鏡(SEM)

  收集樣品表面的二次電子信息,反映樣品的表面形貌和粗糙程度,帶有EDS配件的SEM可以進一步分析元素種類、分布以及半定量的分析元素含量。雖然SEM的分辨率遠小于TEM,但它仍是表征電池材料的顆粒大小和表面形貌的最基本的工具。

  (2)透射電鏡(TEM)

  材料的表面和界面的形貌和特性,在關于表面包覆以及闡述表面SEI的文獻中多有介紹。TEM也可以配置能譜附件來分析元素的種類、分布等。與SEM相比TEM能觀察到更小的顆粒,并且高分辨透射電鏡可以對晶格進行觀察,原位TEM的功能更加強大,在TEM電鏡腔體中組裝原位電池,同時借助于TEM的高分辨特性,對電池材料在循環過程中的形貌和結構演化進行實時的測量和分析。

  (3)原子力顯微鏡(AFM)

  納米級平整表面的觀察,在碳材料的表征中使用較多。

  3、晶體結構表征

  (1)X射線衍射技術(XRD)

  通過XRD,可以獲得材料的晶體結構、結晶度、應力、結晶取向、超結構等信息,還可以反映塊體材料平均晶體結構性質,平均的晶胞結構參數變化,擬合后可以獲取原子占位信息。

  (2)擴展X射線吸收精細譜(EXAFS)

  通過X 射線與樣品的電子相互作用,吸收部分特定能量的入射光子,來反映材料局部結構差異與變化的技術,具有一定的能量和時間分辨能力,主要獲得晶體結構中徑向分布、鍵長、有序度、配位數等信息;通常需要同步輻射光源的強光源來實現EXAFS 實驗。

  (3)中子衍射(ND)

  當鋰離子電池材料中有較大的原子存在時,X 射線將難以對鋰離子占位進行精確的探測。中子對鋰離子電池材料中的鋰較敏感,因此中子衍射在鋰離子電池材料的研究中發揮著重要作用。

  (4)核磁共振(NMR)

  NMR具有高的能量分辨、空間分辨能力,能夠探測材料中的化學信息并成像,探測枝晶反應、測定鋰離子自擴散系數、對顆粒內部相轉變反應進行研究。

  (5)球差校正掃描透射電鏡(STEM)

  用途:用來觀察原子的排布情況、原子級實空間成像,可清晰看到晶格與原子占位;對樣品要求高;可以實現原位實驗

  (6)Raman

  早期用拉曼光譜研究LiC0O2的晶體結構,LiC0O2中有兩種拉曼活性模式,Co—O伸縮振動Alg的峰與O—Co—O的彎曲振動Eg的峰。也多用于鋰離子電池中碳材料石墨化程度的表征分析。

  4、官能團的表征

  官能團又稱官能基、功能團,是決定有機化合物化學性質的原子和原子團。常見官能團有烴基、含鹵素取代基、含氧官能基、含氮官能基以及含磷、硫官能團5 種。

  (1)拉曼光譜(RS)

  由印度物理學家拉曼在單色光照射液體苯后散射出的與入射光頻率不同譜線的實驗中發現的,從拉曼光譜可以得到分子振動和轉動的信息。拉曼光譜適用于對稱結構極性較小的分子,例如對于全對稱振動模式的分子,在激發光子的作用下,會發生分子極化,產生拉曼活性,而且活性很強。

  在鋰離子電池電極材料表征時,由于拆卸和轉移過程難免人為或氣氛原因對電極材料造成干擾,因此原位技術與拉曼光譜一起用在了電極材料的表征上。拉曼光譜對于材料結構對稱性、配位與氧化態非常敏感,可用于測量過渡金屬氧化物。

  對于拉曼光譜的靈敏度不夠的情況,可以使用一些Au和Ag等金屬在樣品表面進行處理,由于在這些特殊金屬的導體表面或溶膠內靠近樣品表面電磁場的增強導致吸附分子的拉曼光譜信號增強,稱之為表面增強拉曼散射(SERS)。

  (2)傅里葉變換紅外光譜

  紅外光譜使用的波段與拉曼類似,不少拉曼活性較弱的分子可以使用紅外光譜進行表征,紅外光譜也可作為拉曼光譜的補充,紅外光譜也稱作分子振動光譜,屬于分子吸收光譜。

  依照紅外光區波長的不同可以將紅外光區分為三個區域:① 近紅外區,即泛頻區,指的是波數在4000 cm?1以上的區域,主要測量O—H、C—H、N—H鍵的倍頻吸收;② 中紅外區,即基本振動區,波數范圍在400~4000 cm?1,也是研究和應用最多的區域,主要測量分子振動和伴隨振動;③ 遠紅外區,即分子振動區,指的是波數在400 cm?1以下的區域,測量的主要是分子的轉動信息。

  由于水是極性很強的分子,它的紅外吸收非常強烈,因此水溶液不能直接測量紅外光譜,通常紅外光譜的樣品需要研磨制成KBr的壓片。

  通常紅外光譜的數據需要進行傅里葉變換處理,因此紅外光譜儀和傅里葉變化處理器聯合使用,稱為傅里葉紅外光譜(FITR)。在鋰離子電池電解液的研究中,使用紅外光譜手段的工作較多。

  (3)深紫外光譜(UV)

  主要用于溶液中特征官能團的分析。

  5、材料離子運輸的現象

  (1)中子衍射(ND)

  結合最大熵模擬分析方法可以得到電極材料中的Li+擴散通道的信息。

  (2)核磁共振(NMR)

  測得一些元素的核磁共振譜隨熱處理溫度的變化,測得Li+的自擴散系數。

  (3)原子力顯微鏡系列技術(AFM)

  利用針尖原子與樣品表面原子間的范德華作用力來反饋樣品表面形貌信息。AFM具備高的空間分辨率(約0.1?)和時間分辨能力,由于它不探測能量,并不具有能量分辨能力,于1996年首次應用于鋰離子電池研究中。

  6、材料微觀力學性質

  電池材料一般為多晶,顆粒內部存在應力。在充放電過程中鋰的嵌入脫出會發生晶格膨脹收縮,導致局部應力發生變化,進一步會引起顆粒以及電極的體積變化、應力釋放、出現晶格堆垛變化、顆粒、電極層產生裂紋。

  (1)原子力顯微鏡系列技術(AFM)

與納米壓印技術以及在TEM中與納米探針、STM探針聯合測試;觀察形貌特征,在采用固態電池時可以進行原位力學特性、應力的測量;Jeong等采用AFM原位觀察了HOPG基面在循環伏安過程中形成的表面膜的厚度。

  (2)SPM探針

  用途:研究SEI膜的力學特性

  在接觸模式下,以恒力將探針扎入膜,便可得到該處扎入深度隨力的響應曲線,進而可以得到楊氏模量等信息。

  7、材料表面功函數

  (1)開爾文探針力顯微鏡(KPFM)

  通過探測表面電勢對探針的作用力,來得到樣品表面的電勢分布。

  (2)電子全息

  測到全固態鋰離子電池充放電過程中電勢的變化情況,得到不同體系下電勢在界面的分布。

  (3)光發射電子顯微鏡(PEEM)

  用于得到表面電勢的分布。

  除了上述表征手段,在實際的實驗中,還會用到一些其他的表征技術,比如:(1)角分辨光電子能譜(ARPES),用途:直接測量材料能帶結構;(2)DFT計算,用途:獲得材料的電子結構;(3)電子淹沒技術(PAT),用途:測量缺陷結構和電子結構;(4)盧瑟福背散射(RBS),用途:可以測量薄膜組成;(5)共振非彈性X射線散射(RIXS),用途:研究原子間磁性相互作用;(6)俄歇電子成像技術(AES),用途:直接探測顆粒、電極表面鋰元素空間分布,通過Ar離子剝蝕還可進行元素深度分析等。當然,在研究鋰電時,電化學表征也是十分重要的。


本文相關專題
推薦
關閉